STEADY-STATE HEAT TRANSFER BETWEEN FLUIDS
SEPARATED BY A THIN PARTITION

B. M. Khusid _ UDC 536.243

The solution is obfained of the conjugate problem of steady-state convective heat exchange
between two viscous fluids separated by a thin-walled wedge. The solution is employed in
the design of heat exchangers of the "star"” type.

1. Steady-state heat exchange is considered between two different viscous fluids separated by a thin-
walled wedge of finite size with the flare angle equal to g8 (Fig. 1). The subscript o refers to quantities
in the region @ (o =1 or 2). Hydrodynamic computations for the boundary layer employ the solution of the
~ flow past the infinite wedge. It was shown in [1] that in this case the flux rate at the boundary of the bound-
ary layer is given by

U () = Uy o (1), my == Bi2 —B), m, = (2 - B)/B.

To solve our problem the equations of a stationary boundary layer are used, the heat-conduction equa-
tion for the wedge walls and the appropriate boundary conditions, the heat flux g,(y) for x = L being given
in advance, In view of the symmetry of our model it suffices to solve the problem for one wedge wall only
under the condition that
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By introducing the dimensionless coordinates x, y -~z — x/L, 1w, = —;—-(m,‘ +1)Re, | M= D2 (—py*t!

(y *-H,,L inthe regiona, x,y~ z-—=x!L, ;- y/L on the wedge wall and introducing the flow function
P, =v, {(2:(m,, - 1)) Re_2"= "'} _(x,), Re, == U, . L/v, one can write the conjugate heat-exchange problem as
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Similarly as in [2], Eq. i3) and the conditions (7) and (8) are averaged over fhe dimensionless thickness h
of the wall of the wedge. Assuming that the wedge walls are adequately thin one can set
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Thus by using the conditions (4), (5), and (9) one obtams
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The solution of the heat problem (2), (6), (10)-(13) is sought in the form (which is also suitable for
any my, my),
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By inserting (14) in (2), (10), (13) and comparing the coefficients of equal powers of z for each ®a(i) the
following recurrence relations are obtained
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In an expanded form (16) is as follows:
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The recurrence relations (16) (together with (14')) are solved for s = 1, 2 as follows:

9 = 8,5 TR YO~ TO %R
@ [ THo o T, s>0, an
» ' E, s= k.
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To find Y0(3) = Yi(,)o,o(o) = ©;(0, 0) one employs the boundary condition (11). (It should be mentioned that the
boundary condition (12) is already satisfied in view of the assumed form of the solution (14), (14').) The
insertion of (14) into (11) (using (17)) results in '
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The temperatures of the wedge wall and of the heat flux from the fluid to the wedge are now written down,
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From (18) and (19) one can find Nuy = —(Lgg|y= -Hé,, a)/ka(Ts_Too ,a). Itis not difficult to show with
the aid of the inequalities (I1.4)-(IL. 6) (Appendix II) that the series appearing in the expressions (18)-(19) are
convergent,

it is noted that the solution (18), (19) of the conjugate problem (1)-(8) was obtained by neglecting the
interaction between the boundary layers on different walls of the same region o as well as the effect of the
ends of the edge on the flow.

2. The above solution is suitable for describing the heat exchange for the model (Fig. 2), (For any
my, my). In this case to calculate g appearing in (1) the formula g, = 2my/(mg + 1) should be used.
The expressions (18)-(19) simplify considerably for my = m, = 0, Pr; = Pry:

) ./ (3)
VP = (M, )+ My (0, O+ Bl -+ My - Ry [ (2]
: z=1
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Fig. 3. Heat exchange for a "star" type construction. In region
1 a source is active with output E(r=1,2,...,N).

Fig. 4. A model showing the physical meaning of the parameter
M. p(x) = pp—pU§/2(x/LY™, m = 0.
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In contrast to [3], in the solution (18)-(19) obtained by us for my = m, = Nu, = 0 the dissipative terms in
the energy equations for fluids and the lengthwise heat conduction of the plate are taken into account,

3. Employing the same method of solution one can also evaluate the heat exchange of the model shown
in Fig, 2 but with the boundary condition

dT
L) ——am
. ( i q.(y (20)
By carrying out the previously described transformations, the boundary condition

0
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is obtained which should now be used instead of (12). For (21) to be taken into account we introduce in (14)
the additional term ®(O‘l")(z, 7o) Which can be determined by the formula (14") with p(4) =1, This results in
additional terms for (18),

~}-0a
Nu,z( 1 - EZS W T‘ﬁ)) : (22)
s==1 ’
and in the square brackets of (17') and (19) one now has rgspectively
te _ g
R 1+ DLExTS) , Rz rshe + DZxBEXTH]. 21n

s==1 s=1

These solutions enable one to compute the heat exchange for a construction showg in Fig. 3. The expres-
sions (17'), (18), (22), (22") for Ts,r(0) can be represented by Tg, r(0) = er®) + qi,r/ar(z) (e are in-
troduced to shorten the notation), .

The solution of the system of (N + 1) equations obtained from the heat-balance condition in the re-
gion 1 is as follows:
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where "fs is the temperature of the region 1,
By inserting Tg, Gy, r in (18), (19), (22), (22") thermal fields are obtained in each plate.
4, In conclusion the physical meaning of the parameter M will be discussed in more detail.

During the time At there comes from the fluid into the volume AV the amount of heat qg = k(8T
/ 8Y)y = (AXAZy At ~ k[(Ts—T o)/ 6]AXAZ AL, where 6 ~ L[2/(m + 1)RePrt/? is the thickness of the heat
boundary layer. During the same period of time there comes into the same volume some amount of heat
propagated along the body q = kg(62Ts/ axz)AxAszAt ~kg[(Ts—Tw)/LylAXAz;HAL. Hence one can see
that

q,/g ~MVY Pr.

Thus the similitude criterion which involves the heat parameters of the fluid as well as of the body
shows how many times the heat flux from the fluid is greater than the heat flux propagated in the body. It
should also be mentioned that such similitude criterion is especially characteristic for conjugate heat-ex-
change problems,

APPENDIX 1

foo
a) The function I(Pr, A) = f exp {~PrQ}dn is studied where
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From (I.1) one easily obtains
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It was shown in [1] that ' = 0 for g = 0; therefore, (1.2) implies that
ol Jdf

JPr dh
b) By using the method of steepest descent one can derive the following approximate formulas [2]:
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To evaluate I( )k n in the case of slow convergence of the series the Euler transformation should be

used.
2 1/3 . 11 6 2/3 . 9f?
o= EcPr"athr"’/s & =2 (—6—) i — b (_’—) P

3 A 18 ha 8ha

r==0

915



s 2 (6 \Pasp a1
fo2 (_) (216 @ LLIT8 PN e g
aa \ha) | 1296« 15| 6 14-46 |
(r )
E dkA,_.kwh,,., rg 3,
k=0
=1,
2 dl:A:-—k“)h,r’ r>3v
k=r—3
Nf_l‘ 1
}_‘ Ko ()~ Ko () - Ty 4 dap o Pr>2,
“)k,r o} oB=
2 Xe,r (1), 1< Pr< 2,
n==0
1 r;—l l —r r—i~2 . .
— exp (—&N) - ed T , eN )],r:/: I,
r—1 o
Jl,r = ! !
—_'L—Ei(_EN)' re=1,
- 4 e
_%[—N 3 exp(—eN)+e® JI’TJ r+ 4,
f— .
2, kyT =
Nh,r E N
i — 3 l(—b ). ) r= 41
v rd-r—bk—8
e T Xp,r () =
r (n -+ r+2 2)
3

( Pr—2\" 2
F(n4-1)@n4-k+1) ( Pr )'E;“I"(l_ﬁ)'

T'(n, 7) denotes the incomplete gamma-functmn Ei(T) denotes the integral exponential function: N is a
suitably large number,

APPENDIX II

It can be seen from (15) that for k + n = s one has

( i s i ‘ i s '
pia=p" + =y + 3 <wl =00 + o= 3, (IL.1)
o )
2B = g 1,8 < () < 7‘(1) =1 , 11.2
s +.P2+1\v}m'k +P1+1 w2
where
py == omin {my, 1y}, Pa == max {my, m}.

By using (1.3) and (I1.2) one can easily prove the inequality
K1 = 1 (Pry, M2 < Bhnets Hohetn <7 K3t == 1 (Pry, M), (I.3)
where Pry = max {Pry, Pr,}, Pry = min {Pry, Pry}.

Thus, the followmg estimates from (I.1) and (I.3) can be obtained by using the explicit formof the
matrix T

s,8-4 D& L Zz xT&) <D‘3> DR, < Ez >\T§‘{><R(" DY R, (I1.4)
=1
(dDéa’ ) LO 5T dD\®
<
. dZ 2=l o dZ z-l
J p . (IL.5)
("(”D“’R)z_l < 2 OXTEXRE < == @D Ry,
s=1
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NOTATION
T, (T, Tg) is the temperature of incident fluid (of boundary layer, wedge);
kkg) is the heat conduction coefficient of fluid (wedge);
v is the kinematic viscosity;
c is the fluid specific heat capacity;
P is the fluid density,
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